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ARTICLE INFO ABSTRACT

Keywords:

What would have happened if a relatively looser fisheries policy had been implemented in the European Union

CFP (EU)? Using Bayesian methods a Dynamic Stochastic General Equilibrium (DSGE) model is estimated to assess

Bayesian estimation

the impact of the European Common Fisheries Policy (CFP) on the economic performance of a Galician (north-

DSG? - assificati west of Spain) fleet highly dependant on the EU Atlantic southern stock of hake. Our counterfactual analysis
szazms eetJEL classification: shows that if a less effective CFP had been implemented during the period 1986-2012, fishing opportunities
028 would have increased, leading to an increase in labour hours of 4.87%. However, this increase in fishing activity
co1 would have worsened the profitability of the fleet, dropping wages and rental price of capital by 6.79% and

0.88%, respectively. Welfare would also be negatively affected since, in addition to the increase in hours worked,
consumption would have reduced by 0.59%.

1. Introduction

Within the European Union (EU), fisheries management programs
followed a decentralized approach: while government agencies sought
to control fishing mortality, private fishing firms decided their fishing
effort and future capacity levels based on the consequent fishing pos-
sibilities. Those fishing possibilities, determined on the basis of overall
management objectives (e.g. Maximum Sustainable Yield, -MSY-), were
converted into EU Member State (MS) shares using fixed share system
and distributed among national fleets at a MS level.

EU fisheries historically failed to maintain healthy stocks and in
reducing overcapacity (Villasante, 2010). This was probably due to the
lack of an efficient institutional framework. However, a strong com-
mitment on MSY objectives set by the EU Common Fisheries Policy
(CFP) always forced a strategy of recovery of fish stocks (Cardinale
et al., 2013). This recovery reduced the fishing possibilities of fleets. In
that regard, a mayor complaint from fishing firms was that the stock
recovery decreased their financial profitability.

The above is what is known as the “folk theory”: It holds that the

decrease in profitability resulted from the reduction in fishing possi-
bilities. This theory is not devoid of arguments. The implementation of
input controls and the lack of efficient economic instruments (i.e. quota
transferability) are arguments that support this theory from the eco-
nomic point of view. Furthermore, economic theory says that more
healthy stocks can increase the profitability of fishing firms, but stock
size recovery phases are less clear and a look at specific case such as the
Galician fleet (north-west Spain) reveals that the trend of historical
profitability is exactly like that described in the “folk theory”: Fewer
vessels and lower financial profitability.

It is complicated to assess this “folk theory” in a general way, be-
cause EU stock recoveries (if any) are divided into MS and fleet shares.
These shares, defined on basis of historical catch records from the
period 1973-1978 (the so-called relative stability principle), have di-
verged from the fishing capacity of the fleets in such a way that a
chronic misalignment of fleet's fishing capacity and their fishing pos-
sibilities come to be observed, in general, in EU fisheries (Da Rocha and
Gutiérrez, 2006).

There are several exceptions to that partitioning of the stock
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recovery. When Spain and Portugal entered what is now the EU in
1986, the so-called southern management stocks were defined. These
management stocks, while questionable from the ecosystem point of
view, gave these two MS the possibility of managing their own stocks
without committing to a share that had to be distributed among other
MS. Essentially, these two MS were able to take advantage, alone, of the
productivity of the southern stocks. Not surprisingly, these stocks have
always diverged from their management objective. This increased the
number of biomass recovery programs, echoing the “folk theory”.

This was the case of the recovery plan for the EU Atlantic southern
stock of hake (EU, 2005), which controlled total allowable catches
(TACs) in order to recover the spawning stock of biomass. Other plans
for this stock aimed to regulate (limit) the maximum number of days at
sea per vessel (EU, 2017) to reduce the fishing mortality. But the fleet
reacted by adapting their fishing effort and capacity to these plans, and
the consequences were that these stocks failed to meet their manage-
ment objectives and stagnated “folk theory”.

However, given the capacity of these MS to take advantage of the
productivity of the stock without no major commitment in terms of how
that productivity had to be shared, a relevant analytical framework was
set up for assessing this recovery policy and the way in which fleets
responded to it from the point of view of the productivity.

Given the decentralized fishery policy followed in the EU, single
planner frameworks are not appropriate for describing fleet responses
(Da Rocha and Gutiérrez, 2012; Da Rocha et al., 2017). Therefore,
decentralized fishery models have to be built where forward-looking
economic agents react to fishery management programs based on op-
timizing individual behaviour. This is why in this paper we have chosen
a Dynamic Stochastic General Equilibrium (DSGE) model. This frame-
work enables aggregate economic phenomena to be built on explicit
micro-foundations involving rational and forward looking optimizing
behaviour of individual economic agents (Kydland and Prescott, 1982).
When this type of models are estimated, policy shocks can be isolated
from historical disturbances that may have affected the economy. To
the best of our knowledge, this is the first time this methodology is used
to assess policies in fisheries economics.

In this paper, the estimation of the proposed model enables the ef-
fects on the fishery of the recovery plan implemented by the CFP to be
assessed. Furthermore, the model estimated can be used to build
counterfactual situations that can be compared to the real impact of the
CFP on the fleet. In that sense, a counterfactual scenario is built up to
analyse what would have happened if a relatively looser recovery
policy had been applied in the EU Atlantic southern stock of hake re-
building strategy. In other words, the main aim of this paper is to show
whether or not “folk theory” can be sustained by an economic model.

2. Material and methods
2.1. Model

It is assumed that the economy is formed by four types of agents:
households, firms, vessels, and the regulatory authority, which in our
context is the EU.

We consider that regulation acts as a technological constraint that
can be embedded in the model by including a lottery in household
preferences (Hansen, 1985; Rogerson, 1988). Essentially, instead of
choosing the number of fishing days, households choose a probability of
fishing. This lottery framework enables the preferences of household to
be written as a function of an exogenous parameter z, that measures
how regulating the maximum number of days at sea affects household
preferences. We assume that the policy implemented can be summar-
ized by the following stochastic process:

Zi1 = (L + )z + 001,

where vy is an exogenous expected trend and ¢, ,,, represents a white
noise.
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Household welfare is measured in terms of utility. The re-
presentative household derives utility from consumption, C;, and dis-
utility from labour, L;. Income from wages earned, w;L;, and rental
rates on physical capital R,K;, are used by households to purchase the
consumption good and invest, I, in productive capital. Formally, the
representative household selects its lifetime consumption and labour
supply paths by solving the following intertemporal decision problem,

max E: Yo" B{log C; — e¥BL},
{Ct,Lt.Kt+1}=0 -
s.t C + I, = RK; + w,L,,

K1 =1 — e2+18)K,; + I,
Zip1 = (L + 7))z + Egr1,

where E, represents the expectation given the information available at
period t, B is the weight of labour in terms of consumption, § is the
discount factor, § is the capital depreciation rate, and R, = r; + ¢ is the
gross capital rental rate. €5, is an unexpected shock affecting capital
depreciation.

Note that z, is the policy variable that indirectly regulates the
maximum number of days at sea for vessels. Therefore, an unexpected
positive (negative) policy shock, ¢, must be understood as a re-
duction in the maximum number of days at sea, which implies an in-
crease (reduction) in household disutility due to labour.

Firms produce the planned added value of the economy, Y;, with a
Cobb-Douglas technology that uses labour and physical capital as in-
puts. Formally, firms choose the input amounts that minimize costs
such that:

minkE {w,L, + e7+15K} s.t. Y, < AKFLS,

LKy
where A, is the total factor productivity (TFP) and ¢, ,4; represents
unexpected shocks affecting the price of physical capital. Note that
technology serves to split the added value between income from labour
and capital, with a representing the capital share of the added value.
Vessels select the fishing effort, F; that enables them to land catches,
Y2, compatible with the planned added value. Formally, F, is selected
taking into account the Baranov (1918) catch function, i.e.

min(Y7 - %)’
F
A

puFt
a1 Waiy +pFt

S. L. YtB = Z (Na,[ - Na+1,t+1)a
where N, , represents the abundance fish of age a = 1...., A at time ¢, w,,
p, are the average weight and the selectivity parameter of age a, re-
spectively, and m is the natural mortality, which, we assume, that it
does not depend on age.

Finally, we assume that the TFP of the economy, A, is related to the
size of the fishery stock. Formally,

A Astock
At = el(z WaNa,[) s

a=1

where the parameter 6, represents TFP shocks due to factors other than
those affecting stock abundance and oy is the TFP elasticity. The
biological model is completed with the dynamics of the resource. We
consider that the stock evolves according to an age-structured popula-
tion model where abundance is given by

Na+1 t+1 — ei(m+paFt)+£a'H1Na ts

where ¢, 41 represents an unexpected shock affecting the total mortality
rate of age a. Note that total mortality rate is decomposed into natural
mortality m and fishing mortality, p,F; + €,+1,. Moreover, recruitment
(in logarithm terms) is modelled as a 1-lag autoregressive (AR) process

logNy 11 = (1 — p)log Ny + p log Ny, + &,441,

where p is the autocorrelation parameter and N; is the mean recruit-
ment.
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This DSGE model is solved using standard numerical methods for
solving forward-looking models with rational expectations. The solving
method is based on a linear state-space form obtained by linearizing the
system around the steady state (Blanchard and Kahn, 1980).

2.2. Bayesian estimation

The model is applied to the Galician trawl fleet which is highly
dependent on the EU Atlantic southern stock of hake (Sampedro et al.,
2016). This fleet operates in the Iberian Atlantic waters (limited to the
north-east by the Spanish-French border and to the south-west by the
Straits of Gibraltar). Galicia is the main Spanish and EU region from the
economic dependency on fisheries, point of view (Macho et al., 2013).

The model calibration keeps some parameters fixed and estimates
those related to the model dynamics using Bayesian techniques. In
particular, we keep fixed parameters for the technology of production:
factor shares, a, depreciation of physical capital, §, and parameters
from the Baranov catch equation, w,, p, and m. We estimate those
parameters related to i) recruitment dynamics (p and the standard de-
viation of g ), ii) abundance dynamics (standard deviations of ¢, ), iii)
policy dynamics (B, y and the standard deviation of ¢,,), iv) TFP elas-
ticity, asock and, v) capital rental rate (standard deviations of e, ;).

The biological population data and technological (Baranov) para-
meters are taken from STECF (2015). The factor share, a, is set to 1/3
following Gollin (2002) and capital depreciation, &, is selected at
12.90% to match fixed capital allowances from MAPAMA, Ministerio de
Agricultura, Pesca y Alimentacién (2016b).

The Bayesian estimation of p, ook, B and vy, carried out using
Dynare software (Collard, 2001), involves combining the estimation of
the parameters by maximum likelihood using an observed set of data
with the information obtained from prior distributions defined for those
same parameters. The data set used includes yearly observations of
abundance for seven ages, N, for a =1, ...7, landings, Y, labour, L,
fishing mortality, F, and physical capital, K. The prior distributions used
for the estimation follows the standard practice in DSGE models. In
particular, we use the parameters calibrated to match long-run averages
as priors, i.e. steady state with y = 0.

The biological time series data (1982-2012) refers to the EU
Atlantic southern stock of hake (Merluccius merluccius, coded as HKE).
Data is normalized using the sample median. Fishing mortality and
landings comes from ICES (2017). The capital and labour time series
(2004-2012) are built using data from the Galician Statistics Institute
(IGE, Instituto Galego de Estatistica) and from the Spanish Economic
Survey of Fisheries (MAPAMA, Ministerio de Agricultura, Pesca y
Alimentacién, 2016a).

The steady state of the model is computed assuming a capital output
ratio, K/Y, of 2 and normalizing labour in 2004 at 1/3. Finally, we
assume Inverse Gamma prior distributions for non-negative parameters
(like the standard deviations of the shock processes) and prior normal
distribution for the policy coefficient, y. Table 1 shows the priors and
the posterior (mean and standard deviation) of the main parameters of
interest.

Comparing the posterior estimates with the priors is informative.
Fig. 1 shows the prior and posterior distributions of the estimated
variables. The posterior distributions estimated (the black line, with
the vertical green line representing the posterior modal value) depart
substantially from the prior distributions assumed (grey line). In
particular, the prior and posterior distributions of stock productivity
(ctstock), €xogenous labour disutility (B) and its trend parameter (y),
and the recruitment AR process (p) differ substantially, indicating
that the information content of the aggregated data is very in-
formative. Fig. 2 compares the evolution of the series used (the
“true” time series) with that generated by the model for the same
variables.

To understand how the model works in terms of policy, we present
the impulse response functions associated with the effects of a policy
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shock, €. In particular, we study the fishery's reaction to the impact of a
1% reduction into the maximum number of days at sea per vessel. Fig. 3
shows that, as expected, decreasing the maximum number of days at sea
per vessel (by increasing z, with a positive shock in ¢,) depresses value
added, Y;, consumption, C;, investment I;, total employment, L;, and
capital, K; in the short run. On one hand, the reduction in the hired
labour makes this input more productive, leading to an increase on
wages. On the other hand, a reduction in the maximum number of days
at sea substantially decreases fishing mortality, F, and this positively
affects the abundance of the stock, N;, for all ages (not shown in the
figure). As a result, TFP of the fishery, A, = Qt(z;l waNa,[)a"“’Ck, in-
creases accordingly leading to a substantial recovery in the future
added value, consumption, investment, and profitability, R, of the
fishery.

3. Results

The evolution of fleet performance in the period 1982-2012 ob-
served is the result of two factors: the economic and biological shocks
hitting the economy (S = ¢, 6, €5, {€,}]) and the policy shocks asso-
ciated with the CFP, ¢,. The two elements are inextricably connected
and it is not possible to decompose the observable time series as the
sum of the two effects (shocks plus policy).

However, it is possible to use the proposed model estimated to
measure the effects due exclusively to policy shocks by simulating
counterfactual situations. In particular, we compare the observed path
variables for the period 1982-2012 with the simulated path variables
that would have arisen under a different policy shocks path.

Formally, let {y (e, S)}:2,,, represent the path of the fishery's
observable variables as a function of the policy shocks ¢, and the re-
maining historical exogenous shocks hitting the fishery, S, for the
period analysed. Now define a counterfactual situation with a different
path of policy shocks for the period 1986-2005 that represents a 10%
increase in the maximum number of days with respect to the original
policy, with all else being, {éz,t}filégﬁ. Given that an increase in the
maximum number of days is given by a negative policy shock, every
new period shock is taken as:

ot = € — 0.10 X [[e ]

Note that this counterfactual analysis considers different policy
shocks from 1986 on, which correspond to the period in which the CFP
applies to the Galician fleet (Spain joined the European Community in
the year 1986).

Once the counterfactual situation is defined, the model estimated is
used to simulate the fishery variables associated with the alternative

policy shocks. By comparing these counterfactual paths,
(B SOEY,, with the historical ones, {;(e;r, S))} 0, We can

measure how the fishery's variables are affected exclusively by a policy
shock associated with the CFP.

Before investigating the predictions of the model concerning the
impact of the CFP on the Galician fleet, it is worth highlighting the time
series obtained from the estimation process for the policy variable, z;.
Fig. 4 shows two well defined regimes for the historical path (black
paths): before and after 2005, which is when the recovery plan came
into effect for the EU Atlantic southern stock of hake.

Fig. 4 illustrates that z, shows a decreasing trend representing a
situation compatible with an increase in the total number of days at sea
for 1986-2005. During that period, historical policy shocks increased
the marginal utility of labour, e%B, leading to a 50% increase in labour
hours, L,. This increase in the total number of days affected the stock
negatively, decreasing its abundance for all ages, N,, and the TFP. This
lower resource productivity led to lower wages, w;, and rental prices, ;.
As a result, consumption also decreased. Therefore, the model esti-
mated considers that the underlying increasing trend in the total
number of days at sea between 1986 and 2005 led to a deterioration in
the financial results of the fleet. These historical paths are consistent
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Table 1
Bayesian estimation for the EU Atlantic southern stock of hake.

prior mean post. mean 90% HPD interval prior dist pstdev
parameters
p (recruitment persistence) 0.900 0.4585 0.2493 0.6182 invg 0.1193
Qstock (stock productivity) 0.149 0.8526 0.7199 0.9475 invg 0.0700
B (labour weight) 5.595 3.1238 2.8523 3.4443 invg 0.1893
% (exogenous trend) —0.010 —0.2125 —0.3732 —0.0393 norm 0.1052
standard deviation of shocks
& (policy) 0.010 0.1922 0.1455 0.2419 invg 0.0323
& (rental capital) 0.010 0.0060 0.0023 0.0096 invg 0.0024
0 (TFP) 1.000 0.2258 0.1716 0.2727 invg 0.0321
£ (capital depreciation) 0.010 1.3013 0.9460 1.6794 invg 0.2282
g (mortality age 1) 0.010 0.4001 0.3225 0.4748 invg 0.0473
& (mortality age 2) 0.010 0.1057 0.0835 0.1264 invg 0.0128
g (mortality age 3) 0.010 0.3684 0.2979 0.4296 invg 0.0414
€4 (mortality age 4) 0.010 0.1273 0.0996 0.1550 invg 0.0179
£ (mortality age 5) 0.010 0.0857 0.0647 0.1047 invg 0.0127
£ (mortality age 6) 0.010 0.1519 0.1137 0.1907 invg 0.0245
& (mortality age 7) 0.010 2.1096 1.4206 2.7207 invg 0.4265

invg: Inverse Gamma distribution; norm: Normal distribution; pststd: Posteriors' standard deviation.

with the lack of enforcement of the CFP evidenced by Da Rocha et al.
(2012a).

The behaviour of the policy variable z; changed after 2005, when
the recovery plan started. The paths shown in Fig. 4 are compatible
with an increase in the total number of days at sea (i.e with a decreasing
trend of z;) from 2005 onwards. This reduced the marginal utility of
labour, e% B, and as result total labour hours, L; decreased dramatically.
This decreasing trend in the total number of days affected the stock

positively, increasing abundance for all ages, N,, and TFP. The higher
resource productivity led to higher wages, w;, and rental prices, 1. As a
result, consumption increased. Therefore, the model estimated con-
siders that the decreasing trend in total number of days between 2005
and 2012 improved the financial results of the fleet.

The historical and counterfactual fleet behaviour were compared by
computing the ratio:
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Fig. 1. Priors and posteriors. The black (grey) line represents the posterior (prior), the vertical green line represents the posterior mode value distribution of the
standard deviation of the policy shocks associated with CFP, ¢,, the other (economic and biological) shocks (e, 6, s {ea}]) and of the recruitment AR process (p), the
stock productivity (asock), the exogenous labour disutility (B) and its trend parameter (y). (For interpretation of the references to colour in this figure legend, the

reader is referred to the Web version of this article.)
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labour, L, wages, W, gross capital rental rate, R, total factor productivity, A, and fishing mortality, F.
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The counterfactual value is higher (lower) than the historical value
when the ratio is higher (lower) than 1. Fig. 5 shows this ratio for all the
variables. Our counterfactual analysis shows that a policy equivalent to
an increase of 10% in the maximum number of days at sea would have
increased labour hours (L) and fishing mortality, (F,), for the whole
period 1986-2012 and it would have reduced wages (w), TFP (A) and
consumption (C). The patterns are not so clear when production (Y),
capital (K), and the rental price of capital, (r), are analysed. Table 2
shows the average counterfactual ratios of all the variables.

Summarizing, the counterfactual analysis shows that relaxing the
enforcement of the CFP during the period 1986-2012 would have
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worsened the economic results of the fleet by lowering wages by 6.79%
and the rental price of capital by 0.88%, on average. Economic agents
would have been affected negatively since labour would have increased
by 4.87% and consumption would have fallen by 0.59%. Also, the re-
source would have suffered from the looser policy, with fishing mor-
tality increasing by 5.02% and the TFP falling by 4.37%.

4. Discussion and conclusions

Economic modelling literature addressing the management of re-
newable resource under uncertainty (Reed, 1979; Clark and Kirkwood,
1986; Sethi et al., 2005) has been criticized by biological modelers for
its inadequate treatment of realistic biological dynamics and un-
certainties. As a result, in practice, government fishery management
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agencies manage fish stocks based on the advice provided by using
biological models based on simulation methods (Ulrich et al., 2012;
Nielsen et al., 2018).

After Tahvonen (2009) showed that age-structured fishery models
representing single planners were analytically tractable, optimization
methods began to be introduced into biological models for assessing
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fisheries (Grafton et al., 2007; Groger et al., 2007; Dichmont et al.,
2010; Da Rocha et al., 2010; Da Rocha and Gutiérrez, 2011; Da Rocha
et al., 2012¢,b; 2013, 2016; Voss et al., 2011; Froese and Quaas, 2012).

This paper extends this optimization view of age-structured fishery
models to a DSGE approach, although other types of stock dynamics
(biomass models) can also be incorporated. In particular, a DSGE model
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Fig. 5. Counterfactual over historical path ratio, (¢, S:)/y,(ez+, S¢) , of landings, Y, consumption, C, physical capital, K, labour, L, wages, W, gross capital rental

rate, R, total factor productivity, A, and fishing mortality, F.
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Table 2
Counterfactual effects ratio.

Variable Ratio (%) Yt (Ez,t,St) % 100
Vi (ez, 1), St)

Output (Y) 99.60

Consumption (C) 99.41

Capital (K) 100.46

Labour (L) 104.87

Wages (w) 93.11

Rental Price (r) 99.11

TFP (A) 95.63

Fishing Mortality (F) 105.03

is used to build a decentralized fishery where rational and forward-
looking economic agents react to fishery management programs. Using
Bayesian methods, the model is estimated to assess the impact of the
CFP on the economic performance of the Galician trawl fleet fishing the
EU Atlantic southern stock of hake. This approach complements pre-
vious studies that also analysed the performance of this fishery in the
context of CFP regulations (Caballero-Miguez et al., 2008; Antelo et al.,
2012; Garcia et al., 2016; Varela-Lafuente et al., in press, 2019).

From a computational point of view, the estimation procedure in
Dynare is highly efficient. In less than 3 min Dynare computes, the
linear state-space form of the model, the likelihood density of the model
using the linear state-space form and a Kalman Filter forecasting pro-
cedure and the posterior distribution using Markov Chain Monte Carlo
methods (Metropolis-Hastings algorithm).! In addition, the computa-
tional time of the counterfactual analysis —done by simulating the linear
state-space form of the model using a Matlab perturbation routine- is
less than 6.

From a policy point of view, the main advantage of the DSGE ap-
proach is that once the model is estimated, counterfactual situations
can be simulated. This enables the policy shocks to be isolated from
historical disturbances that may have affected the economy. This is the
main reason why DSGE models, with special emphasis on Bayesian
estimation methods, have become the main tool for policy analysis at
central banks (Christiano et al., 2005; Smets and Wouters, 2007; Andrés
et al., 2010; Fernandez-Villaverde et al., 2016). Our study takes ad-
vantage of this feature to address fishery policy issues using the same
methodological approach.

Did the CFP reduced the economic performance of the Galician
fleet? This is not an easy question to answer. The pessimistic view
implicit in the question is supported by studies that analyse the CFP
under perspectives ranging from restrictions on the tradability of
quotas, (Garza-Gil and Varela-Lafuente, 2015), stakeholder engagement
(Sampedro et al., 2016), the lack of considering unobserved genetic
diversity (Villasante, 2012), the use of moratoriums as a management
tool (Garza-Gil et al., 2011), the existing gap between recommended
and implemented TACs (Carpenter et al., 2016b) to, in general, the
political will to achieve sustainable fisheries (Carpenter et al., 2016a).
In this diverse context, our study focuses on the impact of the CFP on
the productivity of the fleet in order to answer the question. We find
that, when endogenous productivity is taken into account, if a looser
CFP had been implemented in 1986-2012 the income obtained by the
owners of the vessels and crews would not have increased, i.e. we show
that the “folk theory” is not necessarily borne out in this illustration.
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